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Abstract

This article shows some results related to the optimum 
design of a multilayered electromagnetic absorber, in the 
frequency range between 0.85 GHz and 5.4 GHz, which 

-
tic was used. The results agree with those previously ob-
tained using the standard Particle Swarm Optimization 
(PSO) algorithm and the deterministic method of interval 
analysis, which were previously reported. An important 
reduction on computation time was achieved, although a 
limited results reproducibility persists.
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Resumen

En el presente artículo se muestran algunos resultados re-
lacionados con el diseño óptimo de un absorbedor electro-
magnético multicapa dentro del rango de frecuencias 0,85 
GHz a 5,4 GHz, correspondiente a las comunicaciones 
inalámbricas. Para este diseño, se utilizó el algoritmo me-

Sus resultados concuerdan bastante bien con los obtenidos 
utilizando el algoritmo estándar de enjambre de partículas 
(PSO) y el método determinístico de análisis de intervalos, 
previamente reportados. Se destaca la notoria disminución 
de tiempo de computación, aunque persiste una reproduc-
ibilidad limitada de los resultados.

INTRODUCTION

Today, most electronic devices, especially those used for 
wireless communications, must comply with electromagnet-
ic compatibility standards. This is evaluated in an anechoic 
chamber, where electromagnetic radiation is measured to test 

a similar fashion, the device must also behave properly un-
-
-

netic absorbers (EMAs). Recently, interest in this area has 

and Bluetooth capable devices. Another interesting area is 
so-called EM invisibility at given frequencies, involving new 
materials and combinations as well as different geometries 

and textures. Conceptually, EMA are passive elements used 
(ideally) to attenuate all incident energy. Among the com-
monest geometries, pyramidal, multilayered and different-
texture multilayered, are the most important (Chamaani, 
Mirtaheri, Teshnehlab, & Shooredeli, 2007; Liu, Zhang, Gao, 
Shen, & Shi, 2009; Michielssen, Sajer, Ranjithan, & Mittra, 
1993). Optimum design of a device of this kind not only re-
quires it to function properly, but also to take into account 
electromagnetic, economic and aesthetic variables. There-
fore, optimization has migrated from deterministic methods, 
to evolutionary and metaheuristic ones, such as PSO. Asi 
et al. designed a multilayer microwave broadband absorber 

provided similar results to those achieved using other evolu-
tionary algorithms (M.J. & N.I., 2010).This article presents 
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the design of a planar, three-layer, EMA for the range 0.85 

compared with those previously reported in [3], using con-
ventional PSO and interval analysis. 

FUNDAMENTALS

Reflection Coefficient

An EMA is a passive device used to dissipate most of its inci-

, which depends on the permeability ( ) and the 
permittivity ( ) of the base materials, as well as their order. 

1. Each of the N layers is built with a given material, with 

k
) and 

permeability (
k

contact with a perfectly conducting wall. It is also assumed 

some cases, this assumption is not too far from reality, e.g. 
in a cavity inside a cell phone, where the material is placed 
to keep electromagnetic waves, at a given frequency, from 
entering or exiting the device.
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Figure 1. 

Beginning with the foundations of electromagnetism, the 
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along the z-axis, being  the complex propagation constant. 
The total impedance of the absorber Z(z

this, it can be established that: 
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where  is the intrinsic impedance. On the other hand, start-

each one of the N layers, in a lossless medium, it can be 
shown that (Bronwell, 1944): 
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where t
k
 is the thickness of the layer k, and 

k
 is the imped-

ance of the wave at such a layer. The impedance of the last 
material (from top to bottom), i.e. for k= N, shows it to be 
close to a perfect conductor. 

k
 is the phase constant of the 

k-th layer; it is a function of the frequency, ƒ, which can be 

k
 =  2

k k

                                                                       (4)

Building from these concepts, the objective function, for 

Z(z) in (2) 
transforms into the impedance of material 1, which is a func-
tion of the inner layers. The intrinsic impedance, , is that of 
air, which can be taken to represent the vacuum. Therefore, 
the equation can be rewritten as:

R(ƒ) =
   Z

1
(ƒ) – 

º
                                                                 

(5)
              Z

1
(ƒ) + 

º
  

Given these conditions, it is established that the design re-
-

2005):

F
obj

 = 20Log (max|R(ƒ)|,ƒ  DB                       (6)

where DB is the design band (i.e. the group of frequencies 
between 0.85 GHz and 5.4 GHz). Since both the thickness 
and electromagnetic properties of each layer are unknowns, 
designing an N layer absorber requires 2N optimization pa-
rameters. This is, then, a non-linear multivariable optimiza-
tion, which simultaneously involves both continuous (e.g. 
thickness and frequency) and discrete (e.g. type of material) 
variables. The idea of using this objective function is to mini-

EMA, which absorbs the maximum amount of perpendicular 
EM energy. The optimization strategy focuses on selecting 
the best material from a previously constructed material data-
base. This database is populated with experimental data and 
provides information on their dielectric properties.
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Particle Swarm Optimization

This algorithm was created by Kennedy and Eberhart in 
1995. Thousands of articles have described it, and hundreds 

more complex optimization tasks. A brief description is pro-

the traditional PSO:

V
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 = w * V
i
  + c

1
 * r
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 * (P
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) + c
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                                X
i+1

 = X
i
 + V
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If an N-dimensional space is taken into account, then X
i
 is a 

vector that describes the position of each particle, whereas V
i  

is their velocity. At each iteration, two values are calculated: 
P

l 
-

tion (P
g 

c
1 
, and c

2 
, 

w is the iner-
tia weight, and r

1
 , and r

2 
 are uniformly distributed random 

local and global information is used to modify the original 
information, and a local and global velocity, L

i
, G

i
, appear, 

which use the best position of the neighborhood and of the 
swarm, P

gi
 and P

g 
, respectively. This can be summarized as 

(Parsopoulos & Vrahatis, 2007):
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The constriction factor, , is introduced to limit the speed of 
-

tion factor, u, restricts the local and global components, thus 
enriching the search capabilities of the algorithm. Equation 
(12) shows the new way of updating positions, which can be 

U
i 
).

X
i+1

 = X
i 
+ U

i                                                 
                                                (12)    

In order to consider restrictions, a penalty function was in-

affected particles outside the feasible area. Thus, the problem 
transforms into:

ƒ (x)  =ƒ(x)+k
  *

H (x)                                                    (13)    
³
         ²

where ƒ(x)  is the objective function, and H(x)  is the pen-
alty factor, which varies with the number of iterations, k. H(x)  

H(x) =    ( (g
i
(x))  *  g

i 
(x)r (g i(x)))                            (14)    

with g
i
(x) = g

i
(x) if it is less than zero, and g

i
(x) = 0 otherwise. 

Vrahatis, 2007):

(g
i
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       10,                  g
i
 (x) < 0.001                     

(15)
                g
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 (x
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                      300,                     otherwise

r(gi(x)) =
                    g

i 
(x) < 1                                  

(16)
                                   otherwise

r (g
i
(x)) is related to the penalty function, i.e. it applies a pen-

alty proportional to the restriction violation. In order for the 
particles to remain within the search space, it was decided 
that (Bronwell, 1944):
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where x
max 

 and x
min 

-
ion, the particles were initialized with a uniform random dis-
tribution in this region.

RESULTS AND ANALYSIS

Definition of the operating band

The absorber was composed of three layers. It was designed 
to operate in the frequency range of wireless technologies 
including mobile communications, Bluetooth (2.45 GHz), 

0.915 GHz, 2.45 GHz).

upso Implementation

 
0.1 mm - 2.0 mm, striving to limit the results to a viable so-
lution, since a thick layer is not practical owing to its cost, 
weight and volume. A heterogeneous mixture of materials in 

r
 

is the dielectric constant and 
r
 is the relative permeability of 

each material.

i = 0

m

1
2
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Table 1. 

a. Lossless dielectric materials (
r 
= 1)

r

1

r
 = 15)

GHz GHz

3

4 3

7

c. Lossy dielectric materials (
r 
= 1)

GHz GHz

6 8

7 8

8 6

 ( r
 = 15)

GHz E7 GHz E7

9

11

13

14

16

The material for each layer was selected from the available 
16. During the simulation, W was varied from 0.9 to 0.4. The 
constants c

1
, c

2
, were equal and assumed to be 1.46. Speed 

was initialized in a similar way as position (i.e. randomly). 

and 0.0021]. 

Final design of the absorber

It had previously been reported that the algorithm returned 
three possible designs for the absorber, when solved using 

 

analysis, a solution with a minimum of -21.4605 dB was 
found, consisting of the same materials, and with thicknesses 
of [0.5750, 0.6938], [1.8812, 2.0000] and [1.5250, 1.6438] 
mm, respectively (Salazar & Mora, 2011).

Table 2. 

First Design Second Design Third Design

[mm] [mm] [mm]

16 16 16

3 1.7433

4 4 4

1 3. summarizes some of the results achieved using UPSO, 
maintaining the same experimental conditions as before, and 
using a laptop with an Intel Core i7 processor @ 2.20 GHz, 
8Gb of RAM and a 64 bit OS. 

Table 3. 

Parameters
Materials

Order

Thickness

[mm]
[dB]

Time

[s]

16

3

4

u

16

4

9

u

16

3

4

1.999961

u

16

3

4

3.91

u

16

3

4

1.913168

u

16

3

4

1.996813

u

16

3

4

13.16
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Figure 2. 

It is observed that the results match quite well with pre-
viously reported ones, but were obtained in a shorter time 
(around 30% less) and with fewer iterations. Regarding the 
algorithm parameters, the best results were obtained with  
 = 0.8 and u -

for every six runs one different result was returned. The be-
havior of the best design is summarized in 1. It is important 

simulation result. This is the optimum, since it has a lower 
critical point (-21.4606dB), even though all were located in 
the range [-21.5000 -20.9166]. The average run time was in 
the order of 5 to 10 minutes, with a success rate of over 99% 

CONCLUSIONS

The three-layer EMA showed good performance for the pre-
-

rect selection of the most relevant parameters (e.g. swarm 
-

es the likelihood of achieving a correct answer with a mini-
mum number of runs. By comparing both methods, it can be 
concluded that UPSO is better than the traditional method 
(PSO), in terms of computation time. Another advantage is 
that it can easily include more restrictions - for example eco-
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