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RESUMEN

Proponemos un algoritmo de inferencia gramatical 

para lenguajes regulares que permite ahorrar cómputo 

al usar dos criterios diferentes para elegir los estados 

a ser procesados, un criterio se usa en la primera fase 

del proceso de inferencia (al principio) y el otro en 

el resto del proceso. Realizamos experimentos para 

observar el desempeño del algoritmo, para aprender 

sobre el tamaño ideal de su primera fase y para mostrar 
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Potyviridae.
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ABSTRACT

We propose a grammar inference algorithm for regular 

languages which saves computational cost by using 

two different criteria to choose states to be processed: 
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beginning) and another for the rest of the process. We 

applied experiments to observe performance of the 
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problem in Bioinformatics: the cleavage site prediction 

problem in polyproteins encoded by viruses of the 

Potyviridae family.
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I N T R O D U C T I O N

Grammar inference is a technique of  inductive lear-
ning, that belongs to the syntactic approach of  ma-
chine learning. We develop grammar inference algo-
rithms based on the merge of  states in the mood of  
well-known algorithms like RPNI [7] or red-blue [5]. 
Our goal is to contribute to developing new algo-
rithms which are less expensive in computational cost 
and prone to be applied to real world problems.

We base this research on the idea that the first mer-
ges in the inference process are the most important 
[2]. Therefore it is acceptable to spend more com-
putational resources making these decisions as soon 
as  possible with the available information. Since fi-
nal merges are not so determinant in the quality of  
the final model,  they can be chosen in a simpler and 
cheaper way. An appropriate balance of  both kinds 
of  decisions would yield an effective and efficient in-
ference algorithm.

The rest of  the paper is structured as follows: Sec-
tion 2 presents some useful definitions and notation 
conventions. Section 3 describes our proposed algo-
rithm. Section 4 presents the cleavage site prediction 
problem, a bioinformatics problem considered to 
be solved by the algorithm. Section 5 presents some 
results obtained in the three experiments with both 
synthetic and real data. Finally,  our conclusions and 
future work are presented.

P R E L I M I N A R I E S 
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length of  w is denoted as |�� |.

1 The free monoid is a set that has a binary operation over it, such that the result of  applying the operation to two elements 

of  the set produces another element in the set; also, the binary operation needs to be associative and the set needs to have 

a neutral element.

� Definition 2.1 ���� ���	
��
���	
��� �
��
� 	�� ��� �	��� ���
denoted as «.�������	����������	�����������
��
���
�������
given a, b �����	��������1 . . . am����������1 . . . bn, a 
����	� ����������	� ��!�!���!�!"��
��!�!���!�!�������j, 1 
#�$�#��%�&���
���������	%�'�#�	���$%��i����i and aj < bj).

� Definition 2.2 A Deterministic Finite Automaton 
�(*+"�	����-/������+����0 %���%�2%�30%�*"����
��0�	����
�	�	�������������%���	���������������� ���&����%�2�5�06��7�
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can be extended to words as follows: Let q � Q, s � 
����� �#s| > 1 that is, �����1, . . . , sn����
�"�$q, s%�&�"�$"�
(q, s1, . . . , sn-1), sn). A word x��������
�������'��� �"�$q0, 
x) � F. The set of  accepted words by A is denoted by 
L(A), and is called the language of  A.

� Definition 2.3 A Deterministic Moore Machine is a 
:/������;����0%��%=%�2%�30%>"%����
��0�	���������� �������%���
	�������������%�=�	����������������� ���������������
�	���>%�2�5�
0�6���7�0�	�������
���	�	������
�	��%�30 is the initial state 
����>5�0�7�=�	����������������
�	��8

� Definition 2.4 The DFA associated with a Moore Machine 
;����0%��%�?'%�@%�BC%�2%�30%�>"�	��+����0%��%�2%�30, F) 
���
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by the transition function tM�5����7�=���H��������M��"���
>��2��30, x)), for all x �������
�����2��30, x) exists. M is 
consistent with (D+, DK) if  �x � D+ tM��"���@������x 
��(K��M��"���'8
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46 depending on whether u belongs to D+, DK��
���K�(+�DK) 
respectively.

A word x is accepted by M� �� �6�$x) = 1. The set of  
accepted words by M is denoted by L(M).

� Definition 2.7 Let be an AMPAT M = (0%��, B, ", 
q0,�6) and S � 08������
���	�
��������� ���	������������= 
{q ��0�!�" (p, a) = q, p � S, a � �, q�S}.

� Definition 2.8 Given a Moore Machine M = (0%��,B, 
", q0,�6%�with B = {0, 1, ?} and p, q � 0%��������������
q are distinguished if  there exist u � �� such that 6 $"�
(p, u)) = 1 	 6$"�$q, u)) = 0 or 6�$"�$p, u)) = 0 	 6 
$"�$q, u)) = 1. If  the word u does not exist, we say p, q are 
undistinguished.

 A L G O R I T H M  H Y R P N I

Hy-RPNI (Hybrid Regular Positive and Negative Inference) 
is the name of  our grammar inference proposal. It 
consists of  two phases: in the first phase, a heuristic 
based on a score is used to choose the pairs of  sta-
tes to be merged; the second phase chooses pairs of  
states for merging in lexicographical order (Defini-

A L G O R I T H M  1  H Y - R P N I  ( D + , D � ,  P H A S E O N E S I Z E )

1:  M = AMPAT (D+,D<%�@@�+�&�$C�����J��"��K0��6%
2:  S = [ ] //Is the list of  states in the hypothesis
3:  T = [ ] //Is the list of  states in the frontier
4:  S.append(q0)
5:  T = calculateFrontier(M, S)
6:  countPhase = 0 //counter of  the current counter of  the phase
7:  while T is not empty do
8:  merged = False
9:  if countPhase < phaseOneSize then

10:  &�
������X��
	��	
;�
���;%��%��"
11:  else

12:  &�
������Y��	
��
���	
��;�
���;%��%��"
13:  end if

14:  if merged then

15:  
����Z�������
����Z�����[�1
16:  end if

17:  ����
��
�����*
���	�
�;%��"
18:  end while

19:  return DFA associated to M

tion 2.1). Algorithm 1shows the general strategy for 
inference process. It receives as input a set of  posi-
tive (D+) and negative (D<) samples, and the size of  
the first phase (phaseOneSize), measured as a number 
of  merges; and returns the smallest DFA (Definition 
2.2) consistent with training samples.

List S defined in line 2 stores the states that will be in 
the final hypothesis. List T defined in line 3 stores the 
states in the frontier of  S (Definition 2.7). In line 4, S 
is initialised with q0, the initial state of  the AMPAT M 
(Definition 2.6). The function calculateFrontier (lines 5 
and 17) assigns to list T the frontier of  S. The counter 
countPhase is defined in line 6 starting from zero, it in-
creases each time a merging is done and it allows the 
end of  the first phase to be detected. While statement 
starts in line 7 and stops when T becomes empty and 
the final hypothesis is obtained. Line 9 verifies the 
current phase of  the algorithm, and applies the co-
rresponding method: heuristic or lexicographical. In 
both cases, only if  a merge is done will the countPhase 
be incremented by one. Algorithm returns the DFA 
associated to the final Moore Machine (Definitions 
2.3 and 2.4).
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Merging of  states must preserve the consistency of  
the machine with respect to training samples. In our 
approach, two states can be merged if  they are un-
distinguished (Definition 2.8). The merging functions 
of  the algorithm first determine if  states can be mer-
ged and proceed to merge them when possible. The 
function HeuristicMerge explores all the pairs of  state 
candidates to be merged, formed by a state from set 
S and one from frontier T. Each pair able to be mer-
ged is scored to reflect the degree of  support, in the 
training sample, to the belief  that this merge will be 
correct, which is to say that it will lead us to a right 
model for the target language. The Function Lexico-
graphicalMerge merges the first pair of  states, one from 
set S and the other from set T, in lexicographical or-
der. In both alternatives if  a state from T cannot be 
merged with any state from S, this state is promoted 
to set S, which is to say that the state is inserted in set 
S and deleted from set T.

P R O P E R T I E S

HyRPNI is a deterministic, polynomial algorithm 
whose time complexity is upper bounded by the ex-
pression O(kn4 + (&K k)n3) where k is a constant 
representing the size of  the first phase in terms of  
number of  merges done, m is the total number of  
merges done and n is the size of  the initial AMPAT, 
which is to say the number of  states of  the initial 
model. This complexity expression has two terms 
corresponding to the inference phases respectively: 

kn4 corresponds to the cost of  applying HeuristicMerge 
algorithm (with complexity O(n3)) k times into the 
main cycle of  line 6 in the Hy-RPNI algorithm. The 
second term: (m<� k)n3 corresponds to the cost of  
performing the rest of  merges with a cost of  n2 each 
one into the main cycle in line 6 of  the Hy-RPNI 
algorithm. The worst case of  this algorithm happens 
when k = m and all the merges are done in the first 
phase. In this case, the complexity is the same as the 
\��<�������*��������
�����
����������������
*�����
whole inference process. The best case happens when 
k = 0 and the complexity is the same as the RPNI 
algorithm. Convergence of  this algorithm is provided 
because it has been proved that the convergence of  
a state merging inference algorithm is obtained inde-
pendently of  the order in which merges are done [8] 
when we are inferring DFAs as in this case. Notice 
that changing the criteria to merge states only esta-
blishes a different order of  merging.

E X A M P L E

Consider the AMPAT shown in Figure 1a, when 
HyRPNI is used, it starts with the first phase, that 
applies a heuristic method, S and T lists are set as 
S = {0} and T = {1, 2}. At this point the heuristic 
function assigns two scores, one for the pair of  states 
(0, 1), and the other for (0, 2). Using the heuristic 
function, scores are (0, 1) = 199 and (0, 2) = 499. 
This means we should merge states 0 and 2. After the 
merge shown in the Figure 1b, the first phase ends 
and the process continues in lexicographical order. 

(a) AMPAT from D+ and D *

Figure 1. Moore Machines showing HyRPNI process. Thick circles represent states with output value 1 (acceptation), thin ones represent states with 
���!���������/�%��6���
�	7���	�����������	�����!����	�����!��������8�%�	���	��7�

 (b) Merging states 0,2  (c) Merging states 0,3 and 0,4

0

2

6

8

7

4

5

3

1

0

0

1

1
11 0

0

0
0

0

0,1
1

1 1

0 1

3

0 1

4



48 The next merges are states 0, 3 and 0, 4, in that order. 
The inferred automaton using Hy-RPNI is shown in 
the Figure 1c.

 B I O I N F O R M A T I C  P R O B L E M

Cleavage site prediction problem consists of  predic-
ting the position in a sequence of  amino acids where 
a particular subsequence with a specific meaning or 
function begins (or ends). This problem is present in 
any genome, from viruses to human beings. We are 
interested in cleavage site prediction on potyviruses, 
because they are pathogenic for many important crop 
plants such as beans, soybean, sugarcane, tobacco and 
others with economic and alimentary impact in our 
region. The prediction of  cleavage sites can make the 
understanding and control of  the diseases caused by 
these kind of  viruses easier.

The potyviral genome is expressed through the trans-
lation of  a polyprotein which is then cut by virus-
encoded proteinases at specific sites in the sequence 
of  amino acids, resulting in 10 functionally mature 
proteins responsible for the infection and virus repli-
cation. The functions of  these viral-encoded proteins 
are partially understood. Prediction of  cleavage sites 
is not trivial because even though there are patterns 
of  symbols that mark these places, these patterns are 
quite variable. Because of  the complexity of  the clea-
vage site sequences, the use of  algorithms makes the 
detection of  specific features of  those points easier. 
The prediction of  cleavage sites allows isolating spe-
cific segments to be studied and facilitates the analy-
sis and annotation of  the data obtained experimenta-
lly as well as allowing for their comparison with those 
existing in databases, such as GenBank.

There are different programs approaching the clea-
vage site prediction problem, in several contexts and 
particular species. Some of  them arise from previous 
work and tend to improve the methods and perfor-
mance of  the predecessors. SigCleave from the Em-
boss repository predicts the site of  cleavage between 
a signal sequence and the mature exported protein. 

Its predictive accuracy is estimated to be around 75-
80% for both prokaryotic and eukaryotic proteins [9]. 
Another program available is PeptideCutter which 
predicts potential cleavage sites cleaved by protea-
ses or chemicals in a given protein. NetChop pro-
duces neural network predictions for cleavage sites 
of  the human proteasome [10]. ChloroP predicts 
the chloroplast transit peptides (cTP). ChloroP can 
distinguish between cTPs and other proteins with 
a correlation of  0.76, and it can locate the cleavage 
site within three residues from annotated position in 
about 60% of  the cTPs [6]. The PSORT program is 
an integrated system of  several prediction methods, 
using both sorting signals and global features[3], 
which has subsequently grown to an entire family of  
prokaryotic and eukaryotic protein localisation pre-
dictors. PSORT II predicts on eukaryotic sequences, 
establishing their sub cellular localisation from two 
classes: endoplasmic reticulum, extracellular and Gol-
gi are merged into one category of  secretory proteins, 
whereas the rest: cytoplasmic, mitochondrial, nuclear, 
peroxisomal and vacoular, are merged in to a single 
non-secretory category [4]. A successor of  ChloroP 
is TargetP, which provides predictions of  cTPs, mTPs 
and secretory signal peptides (SPs). For the prediction 
of  cleavage sites SP, TargetP uses the SP cleavage site 
prediction from SignalP. SignalP is one of  the most 
used methods (it uses Hidden Markov Models and 
Artificial Neural Networks). It predicts the presence 
of  signal peptidase to cleavage sites. SignalP produces 
both classification and cleavage site assignment, while 
most of  the other methods classify proteins as secre-
tory or non-secretory [1]. As well as being  the most 
used it is also the most compared method. SignalP 
outperforms PSORT-II in signal peptide discrimina-
tion [1] and outperforms TargetP in the discrimina-
tion between secretory and non-secretory proteins. In 
spite of  the availability of  these and other software 
tools to predict cleavage sites, it should be noted that 
none of  them is designed to segment polyproteins of  
Potyviridae family viruses. Thus,  none of  them could 
be used to solve the problem described at the begin-
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ning of  this section. In fact, as far as we know, this is 
the first paper about the prediction of  cleavage sites 
over the Potyviridae family, so there is no background 
information on which to make any comparisons. 
None of  these tools use grammatical inference (GI). 
Instead most of  them use hidden Markov Models 
and/or neural networks. Two main reasons encoura-
ge us to apply GI: it does not require changes in data 
representation nor does it require assumptions about 
past dependencies among symbols in the sequence as 
traditional methods do.

 E X P E R I M E N T A L  R E S U L T S

We present three experiments where we tested the 
HyRPNI algorithm. The first one shows the beha-
vior of  the recognition rate as the size of  first pha-
se grows on a well-known corpora of  synthetic data. 
The second experiment explores the variation in the 
best value for the length of  the first phase of  the 
algorithm in a new synthetic corpora. Finally, the 

third experiment applies the HyRPNI algorithm to 
the cleavage site prediction problem on polyproteins 
from genomes of  Potyviridae family.

The first experiment is defined on synthetic data, 
using a corpus available in the academic community 
designed by Denis et.al.[3].  We used 30 target auto-
mata with sizes between 2 and 22 states. Thirty auto-
mata were trained varying the size of  the first phase 
from 1 to 10 and considering samples of  maximum 
length 20 (group A), 30 (group B) and 40 (group C). 
We measured recognition rate (on a test set of  one 
thousand samples different from the training ones) 
and execution time; we report the average over the 
thirty languages learnt. Results are presented in Table 
1. Notice that five merges in the first phase of  the 
algorithm are enough to reach best performance. We 
have compared this behaviour with other well-known 
��*�������j� \/~�� �
�� ���<����� �
�� ���� �������� ����
���
������������ �����������
������\��<��������
�
heuristic selection is achieved during all the inference 
process.

Group A Group B Group C

Phase Rec. Rate Time Rec. Rate Time Rec. Rate Time

1 90.22% 0.17s 85.41% 0.32s 83.62% 0.53s

2 90.55% 0.23s 86.33% 0.39s 85.54% 0.60s

3 91.31% 0.31s 87.88% 0.50s 86.98% 0.74s

4 91.35% 0.36s 87.97% 0.59s 87.72% 0.82s

5 91.70% 0.40s 88.09% 0.60s ������� 0.92s

6 91.66% 0.43s 87.87% 0.74s 87.72% 1.11s

7 91.60% 0.48s 87.93% 0.82s 87.81% 1.19s

8 91.60% 0.52s 88.01% 0.90s 87.82% 1.35s

9 91.65% 0.56s 87.94% 1.04s 87.82% 1.48s

10 91.67% 0.62s 88.03% 1.14s 87.68% 1.60s

Group A Group B Group C

Size target Rec. Rate Best 1st. ph Rec. Rate Best 1st. ph Rec. Rate Best 1st. ph

5
10
20
50
100

95.5%
83%

74.31%
64.65%
64.08%

2
14
6
8
23

90.58%
79.36%
73.71%
64.41%
63.68%

2
14
23
24
23

88.44%
78.30%
73.40%
64.41%
63.5%

3
13
1
12
1

;�����<��
����	
�
�	��������	��������
&��������������!������!!�=
	��>=
�?�������
���������������	�����!��

;�����G��
����	
�
�	�������	���J����
�	��
����!!�=
	��>=
�?�������
�������������������!��
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Window Size Size 1st. ph. Exec.time Accuracy Sensitivity Specificity Corr. coef

4/1
5 0:6.18s 0.9835 0.91 0.83 0.87

10 0:14.13s 0.9865 1.0 0.81 0.89

25 0:30.26s 0.9835 0.97 0.79 0.87

14/1
5 0:50.52 0.9448 0.57 0.90 0.69

10 1:10.54m 0.9753 0.95 0.69 0.79

25 3:35.92m 0.9833 1.0 0.76 0.86

10/10
5 1:14.14m 0.9575 1.0 0.4 0.61

10 1:31.83m 0.9575 0.86 0.48 0.62

25 5:13.35 0.9658 0.86 0.63 0.71

Table 3. Results of third experiment on cleavage site prediction problem. Segment P1-HCPro

The second experiment was conducted on a new cor-
pus of  synthetic data which we generated that inclu-
des larger target automata. We generated target au-
tomata of  5, 10, 20, 50 and 100 states (30 automata 
from each size). For each size thirty automata were 
generated and used to label samples. The goal of  this 
experiment is to better understand the behaviour of  
the parameter corresponding to the size of   the first 
phase of  the algorithm. Training samples were 100 in 
all the cases while test samples were 1000 and  were 
disjoint of  training ones. The total length of  the infe-
rence processes was established in thirty five merges 
on average. We reported the average over the thirty 
languages learnt for recognition rate and execution 
time. The second experiment allows us to observe the 
behaviour of  HyRPNI algorithm while learning lar-
ger languages. We are interested in the size of  the first 
phase which allows reaching the highest recognition 
rate with respect to the total number of  merges in the 
inference process. We consider samples of  maximum 
length 20 (group A), 30 (group B) and 40 (group C).

Table 2 presents results of  the second experiment. We 
observe that recognition rates diminish when the size 
of  target automata increases, this may be explained 
by the fact that all the trainings were done with 100 
samples. For a small target automata it is enough in-
formation, but for a larger one, 100 samples are very 
few and don’t yield high recognition rates. We noticed 
that the best values for the size of  the first phase vary 
without following a steady trend. For example, In the 
results for group A, for target automata of  size 10 we 

achieved the best performance with 14 merges in the 
first phase, but if  the size of  the target automata in-
creases to 20 the best value decreases to 6. However, 
if  the size of  target automata increases again to 100 
states, the best value increases to 23, which is more 
than half  of  the inference process because we know 
the complete inference process has nearly  35 merges. 
In group C, we get smaller best sizes for the first pha-
se, but with sudden variations. We compared these re-
cognition rates against those obtained by red-blue al-
gorithm, which applies heuristic merge during all the 
inference process and they are comparable in all the 
cases. We notice that even when we need a long first 
phase to achieve our best recognition rates there is a 
savings on computations of  HyRPNI with respect to 
red-blue (comparison are not reported due to space 
limitations).We concluded from this experiment that 
although HyRPNI allows saving some computational 
costs compared with other algorithms with similar re-
cognition rates, the magnitude of  the savings varies 
from one case to another. In consequence, the size 
of  the first phase of  the algorithm should be tuned 
experimentally according to the specific task.

The third experiment applied HyRPNI to the pro-
blem of  predicting cleavage sites in sequences from 
polyproteins encoded by the genome of  viruses of  
the Potyviridae family. Our purpose is to learn (to 
create?) a model for recognising each of  the nine 
cleavage sites present in the coding portion of  the 
viral genome once it is translated. The training 
samples were obtained from sequences published 



51

#
33

  
re

vi
st

a
 d

e
 i

n
g

e
n

ie
rí

atécnica

in www.dpvweb.net/potycleavage/index.html which 
contains approximately 50 samples for each cleavage 
site. We are using all the available labelled sequen-
ces we know from plant virus databases. As HyRPNI 
needs negative samples, we used positive samples of  
other sites as negative samples for each given model. 
We trained with cross validation of  four blocks. The 
amino acid sequence is considered one window at a 
time. Three lengths of  window were explored: in the 
first case we suppose the cleavage site is located bet-
ween the fourth and fifth symbol. For this reason we 
refer to this window as 4/1. In a similar way, we expe-
rimented with windows 14/1 and 10/10. Three values 
were tried on for the first phase size parameter: 5, 10 
and 25 merges. We selected these values considering 
the results of  former experiments and estimations of  
the total number of  merges in the inference process. 
We quantified the number of  samples in each one 
of  the following categories: tp (true positive, positi-
ve test samples well classified by the automaton), tn 
(true negative, negative test samples well classified), 
fp (false positive, negative test samples classified as 
positives) and fn (false negative,positive test samples 
classified as negatives). From these values for a given 
test set, we can calculate several measures: 

sensibility:                , specificity:                , 

accuracy:                         , and Mathew’s correlation

coefficient:.       .

Table 3 shows the results obtained for the first clea-
��*��������������/�<��/��������������
������� �����
segments it separates. Each cleavage site has its own 
peculiarities for recognition, but due to space limita-
tions we are reporting only one segment. Results in 
each position of  the table are the average over four 
executions of  cross validation. It can be noticed that 
the execution time is around 30 seconds with win-
dow 4/1, but increases to several minutes with 14/1 
and 10/10 windows. In spite of  this, all experiments 

take an acceptable time. Regarding accuracy values, 
window 4/1 has the best values, beyond 98 percent. 
Observing the balance between sensitivity and spe-
cificity, window 4/1 has the best performance again. 
Among the parameters of  HyRPNI algorithm, in 
window 4/1, first phase of  length 10 has a better co-
rrelation coefficient. Following these data, we could 
conclude that the model to recognize the first cleava-
ge site should be trained using 10 merges in the first 
phase of  the algorithm and using a window 4/1. The 
same kind of  analyses have been applied to model 
other cleavage sites, giving us clues about the best 
values for parameters of  the method.

 C O N C L U S I O N S

We present a new grammar inference algorithm de-
signed to get high recognition rates because it carefu-
lly selects states to be merged in the first part of  the 
inference process and it saves temporal cost because 
it changes the criterion of  selection to a computa-
tionally less expensive one in the second phase. We 
show three experiments, two on synthetic data and 
one on a real problem to illustrate the possibilities 
of  the method. From the first experiment it follows 
that the first phase (expensive phase) could be short 
maintaining high recognition rates. The second expe-
riment shows that as the size of  the target language 
grows the ideal size of  the first phase changes in an 
unpredictable way. Nevertheless, it shows that in all 
the cases it is possible to save computational cost and 
keep high recognition rates. Finally, the third experi-
ment illustrates the application of  HyRPNI to predict 
cleavage sites. We obtained significant high recogni-
tion rates. In future work we will apply these models 
to build an application to do automatic segmentation 
of  polyproteins coming from Potyviridae family ge-
nomes and to determine whether GI overperforms 
other traditional methods.

tp
tp+ƒn

tp
tp+ƒp

tp+tn
tp+ƒp+tn+ƒn

(tp�tn) - (ƒp�ƒn)

`���[{�"���[ƒp)(tn+ƒp)(tn+ƒn)
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